Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Methods Cell Biol ; 186: 51-90, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38705606

RESUMO

Technological advancements in fluorescence flow cytometry and an ever-expanding understanding of the complexity of the immune system, have led to the development of large flow cytometry panels, reaching up to 40 markers at the single-cell level. Full spectrum flow cytometry, that measures the full emission range of all the fluorophores present in the panel instead of only the emission peaks is now routinely used in many laboratories internationally, and the demand for this technology is rapidly increasing. With the capacity to use larger and more complex staining panels, optimized protocols are required for the best panel design, panel validation and high-dimensional data analysis outcomes. In addition, for ex vivo experiments, tissue preparation methods for single-cell analysis should also be optimized to ensure that samples are of the highest quality and are truly representative of tissues in situ. Here we provide optimized step-by-step protocols for full spectrum flow cytometry panel design, tissue digestion and panel optimization to facilitate the analysis of challenging tissue types.


Assuntos
Citometria de Fluxo , Imunofenotipagem , Citometria de Fluxo/métodos , Imunofenotipagem/métodos , Humanos , Análise de Célula Única/métodos , Coloração e Rotulagem/métodos , Corantes Fluorescentes/química , Animais
2.
Methods Mol Biol ; 2779: 99-124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38526784

RESUMO

Technological advancements in fluorescence flow cytometry and an ever-expanding understanding of the complexity of the immune system have led to the development of large flow cytometry panels, reaching up to 40 markers at the single-cell level. Full spectrum flow cytometry, which measures the full emission range of all the fluorophores present in the panel instead of only the emission peaks, is now routinely used in laboratories around the world, and the demand for this technology is rapidly increasing. With the ability to use larger and more complex staining panels, optimized protocols are vital for achieving the best panel design, panel optimization, and high-dimensional data analysis outcomes. In addition, a better understanding of how to fully characterize the autofluorescence of the sample, coupled with an intelligent panel design approach, allows improved marker resolution on highly autofluorescent tissues or cells. Here, we provide optimized step-by-step protocols for full spectrum flow cytometry, covering panel design and optimization, autofluorescence evaluation and strategy selection, and methods for performing longitudinal studies.


Assuntos
Corantes Fluorescentes , Laboratórios , Citometria de Fluxo/métodos , Coloração e Rotulagem , Imunofenotipagem
3.
Cytometry A ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38317641

RESUMO

The objective of titrating fluorochrome-labeled antibodies is to identify the optimal concentration for a given marker-fluorochrome pair that results in the best possible separation between the positive and negative cell populations, while minimizing the background within the negative population. Best practices in flow cytometry dictate that each new lot of antibody should be titrated on the sample of interest. However, many researchers routinely use large (30+) color panels due to recent technical advancements in fluorescence-based cytometry instrumentation which quickly leads to an unmanageable number of individual titrations. In this technical note, we provide evidence that antibodies can be effectively titrated in groups rather than individually, resulting in considerable time and cost savings. This approach streamlines the process, without compromising data quality, thereby enhancing the efficiency of setting up high-parameter cytometry experiments.

4.
Cytometry A ; 105(2): 88-111, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37941128

RESUMO

The purpose of this document is to provide guidance for establishing and maintaining growth and development of flow cytometry shared resource laboratories. While the best practices offered in this manuscript are not intended to be universal or exhaustive, they do outline key goals that should be prioritized to achieve operational excellence and meet the needs of the scientific community. Additionally, this document provides information on available technologies and software relevant to shared resource laboratories. This manuscript builds on the work of Barsky et al. 2016 published in Cytometry Part A and incorporates recent advancements in cytometric technology. A flow cytometer is a specialized piece of technology that require special care and consideration in its housing and operations. As with any scientific equipment, a thorough evaluation of the location, space requirements, auxiliary resources, and support is crucial for successful operation. This comprehensive resource has been written by past and present members of the International Society for Advancement of Cytometry (ISAC) Shared Resource Laboratory (SRL) Emerging Leaders Program https://isac-net.org/general/custom.asp?page=SRL-Emerging-Leaders with extensive expertise in managing flow cytometry SRLs from around the world in different settings including academia and industry. It is intended to assist in establishing a new flow cytometry SRL, re-purposing an existing space into such a facility, or adding a flow cytometer to an individual lab in academia or industry. This resource reviews the available cytometry technologies, the operational requirements, and best practices in SRL staffing and management.


Assuntos
Laboratórios , Software , Citometria de Fluxo
5.
Cytometry A ; 103(12): 947-952, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37800362

RESUMO

With the increase in the number of parameters that can be detected at the single-cell level using flow and mass cytometry, there has been a paradigm shift when handling and analyzing data sets. Cytometry Shared Resource Laboratories (SRLs) already take on the responsibility of ensuring users have resources and training in experimental design and operation of instruments to promote high-quality data acquisition. However, the role of SRLs downstream, during data handling and analysis, is not as well defined and agreed upon. Best practices dictate a central role for SRLs in this process as they are in a pivotal position to support research in this context, but key considerations about how to effectively fill this role need to be addressed. Two surveys and one workshop at CYTO 2022 in Philadelphia, PA, were performed to gain insight into what strategies SRLs are successfully employing to support high-dimensional data analysis and where SRLs and their users see limitations and long-term challenges in this area. Recommendations for high-dimensional data analysis support provided by SRLs will be offered and discussed.


Assuntos
Laboratórios , Projetos de Pesquisa , Confiabilidade dos Dados , Citometria de Fluxo/métodos
6.
Curr Protoc ; 3(2): e657, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36744957

RESUMO

Full spectrum flow cytometry (FSFC) allows for the analysis of more than 40 parameters at the single-cell level. Compared to the practice of manual gating, high-dimensional data analysis can be used to fully explore single-cell datasets and reduce analysis time. As panel size and complexity increases so too does the detail and time required to prepare and validate the quality of the resulting data for use in downstream high-dimensional data analyses. To ensure data analysis algorithms can be used efficiently and to avoid artifacts, some important steps should be considered. These include data cleaning (such as eliminating variable signal change over time, removing cell doublets, and antibody aggregates), proper unmixing of full spectrum data, ensuring correct scale transformation, and correcting for batch effects. We have developed a methodical step-by-step protocol to prepare full spectrum high-dimensional data for use with high-dimensional data analyses, with a focus on visualizing the impact of each step of data preparation using dimensionality reduction algorithms. Application of our workflow will aid FSFC users in their efforts to apply quality control methods to their datasets for use in high-dimensional analysis, and help them to obtain valid and reproducible results. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Data cleaning Basic Protocol 2: Validating the quality of unmixing Basic Protocol 3: Data scaling Basic Protocol 4: Batch-to-batch normalization.


Assuntos
Algoritmos , Confiabilidade dos Dados , Citometria de Fluxo/métodos , Anticorpos
7.
Cytometry A ; 103(3): 193-197, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36541818

RESUMO

The issue of what level of contribution warrants authorship, determining a fair order of authors and when and whom to acknowledge in publications is often a cause of debate, and in some instances, has also been a focus of conflict at certain institutions. Shared resource laboratories (SRLs) play a fundamental role in supporting publications, and SRL staff scientists can contribute to numerous areas such as experimental design, sample preparation, data acquisition, data analysis and manuscript drafting and review. However, SRL staff scientists are often unfairly omitted from the author list. To avoid SRLs and SRL staff scientist contributions going unnoticed, the authors have formulated a set of guidelines to aid in the conceptualization and recognition of the technical and intellectual contributions of SRLs. As a better understanding of the role SRL staff scientists play in the achievement of the scientific lead's experimental aims will foster a positive feedback loop, where acknowledgements can lead to more support and funding for SRLs and more engaged SRL staff capable of supporting discoveries and technological innovations that underpin major advancements in the field of life sciences.


Assuntos
Autoria , Laboratórios , Humanos , Projetos de Pesquisa
8.
Curr Protoc ; 2(7): e482, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35819836

RESUMO

Full-spectrum flow cytometry is now routinely used in many laboratories internationally, and the demand for this technology is rapidly increasing. With capacity to use larger and more complex staining panels, standardized protocols are required for optimal panel design and analysis. Importantly, for ex vivo analysis, tissue preparation methods also need to be optimized to ensure samples are truly representative of tissues in situ. This is particularly relevant given the recent interest in adaptive immune cells that form residency in specific organs. Here we provide optimized protocols for tissue processing and phenotyping of memory T cells and natural killer T (NKT) cell subsets from liver, lung, spleen, and lymph node using full-spectrum flow cytometry. We provide a 21-color antibody panel for identification of different memory subsets, including tissue-resident memory T (TRM ) cells, which are increasingly regarded as important effectors in adaptive immunity. We show that processing procedures can affect outcomes, with liver TRM cells particularly sensitive to heat, such that accurate evaluation requires fast processing at defined temperatures. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Processing mouse liver for flow cytometric analysis of memory T and NKT cell subsets Basic Protocol 2: Processing mouse spleen for flow cytometric analysis of memory T and NKT cell subsets Basic Protocol 3: Processing mouse lungs for flow cytometric analysis of memory T and NKT cell subsets Basic Protocol 4: Processing mouse lymph nodes for flow cytometric analysis of memory T and NKT cell subsets Basic Protocol 5: Staining and flow cytometric analysis of samples for memory T and NKT cell subsets Support Protocol: Obtaining cell counts from flow cytometry data.


Assuntos
Células T Matadoras Naturais , Animais , Citometria de Fluxo/métodos , Camundongos , Fenótipo , Baço , Coloração e Rotulagem
9.
Oncoimmunology ; 11(1): 2081009, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712122

RESUMO

Intratumoural administration of unmethylated cytosine-phosphate-guanine motifs (CpG) to stimulate toll-like receptor (TLR)-9 has been shown to induce tumour regression in preclinical studies and some efficacy in the clinic. Because activated natural killer T (NKT) cells can cooperate with pattern-recognition via TLRs to improve adaptive immune responses, we assessed the impact of combining a repeated dosing regimen of intratumoural CpG with a single intratumoural dose of the NKT cell agonist α-galactosylceramide (α-GalCer). The combination was superior to CpG alone at inducing regression of established tumours in several murine tumour models, primarily mediated by CD8+ T cells. An antitumour effect on distant untreated tumours (abscopal effect) was reliant on sustained activity of NKT cells and was associated with infiltration of KLRG1+ NKT cells in tumours and draining lymph nodes at both injected and untreated distant sites. Cytometric analysis pointed to increased exposure to type I interferon (IFN) affecting many immune cell types in the tumour and lymphoid organs. Accordingly, antitumour activity was lost in animals in which dendritic cells (DCs) were incapable of signaling through the type I IFN receptor. Studies in conditional ablation models showed that conventional type 1 DCs and plasmacytoid DCs were required for the response. In tumour models where the combined treatment was less effective, the addition of tumour-antigen derived peptide, preferably conjugated to α-GalCer, significantly enhanced the antitumour response. The combination of TLR ligation, NKT cell agonism, and peptide delivery could therefore be adapted to induce responses to both known and unknown antigens.


Assuntos
Células T Matadoras Naturais , Neoplasias , Animais , Linfócitos T CD8-Positivos , Citosina/metabolismo , Citosina/farmacologia , Guanina/metabolismo , Guanina/farmacologia , Interferon gama , Células Matadoras Naturais/metabolismo , Ativação Linfocitária , Camundongos , Células T Matadoras Naturais/metabolismo , Neoplasias/tratamento farmacológico , Fosfatos/metabolismo , Fosfatos/farmacologia
11.
Curr Protoc ; 1(9): e222, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34492732

RESUMO

Technological advancements in fluorescence flow cytometry and an ever-expanding understanding of the complexity of the immune system have led to the development of large flow cytometry panels reaching up to 43 colors at the single-cell level. However, as panel size and complexity increase, so too does the detail involved in designing and optimizing successful high-quality panels fit for downstream high-dimensional data analysis. In contrast to conventional flow cytometers, full-spectrum flow cytometers measure the entire emission spectrum of each fluorophore across all lasers. This allows for fluorophores with very similar emission maxima but unique overall spectral fingerprints to be used in conjunction, enabling relatively straightforward design of larger panels. Although a protocol for best practices in full-spectrum flow cytometry panel design has been published, there is still a knowledge gap in going from the theoretically designed panel to the necessary steps required for panel optimization. Here, we aim to guide users through the theory of optimizing a high-dimensional full-spectrum flow cytometry panel for immunophenotyping using comprehensive step-by-step protocols. These protocols can also be used to troubleshoot panels when issues arise. A practical application of this approach is exemplified with a 24-color panel designed for identification of conventional T-cell subsets in human peripheral blood. © 2021 Malaghan Institute of Medical Research, Cytek Biosciences. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Preparation and evaluation of optimal spectral reference controls Support Protocol 1: Antibody titration Support Protocol 2: Changing instrument settings Basic Protocol 2: Unmixing evaluation of fully stained sample Basic Protocol 3: Evaluation of marker resolution Support Protocol 3: Managing heterogeneous autofluorescence Basic Protocol 4: Assessment of data quality using expert gating and dimensionality reduction algorithms.


Assuntos
Corantes Fluorescentes , Lasers , Citometria de Fluxo , Humanos , Imunofenotipagem , Subpopulações de Linfócitos T
12.
Cytometry A ; 97(8): 824-831, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32293794

RESUMO

The arrival of mass cytometry (MC) and, more recently, spectral flow cytometry (SFC) has revolutionized the study of cellular, functional and phenotypic diversity, significantly increasing the number of characteristics measurable at the single-cell level. As a consequence, new computational techniques such as dimensionality reduction and/or clustering algorithms are necessary to analyze, clean, visualize, and interpret these high-dimensional data sets. In this small comparison study, we investigated splenocytes from the same sample by either MC or SFC and compared both high-dimensional data sets using expert gating, t-distributed stochastic neighbor embedding (t-SNE), uniform manifold approximation and projection (UMAP) analysis and FlowSOM. When we downsampled each data set to their equivalent cell numbers and parameters, our analysis yielded highly comparable results. Differences between the data sets only became apparent when the maximum number of parameters in each data set were assessed, due to differences in the number of recorded events or the maximum number of assessed parameters. Overall, our small comparison study suggests that mass cytometry and spectral flow cytometry both yield comparable results when analyzed manually or by high-dimensional clustering or dimensionality reduction algorithms such as t-SNE, UMAP, or FlowSOM. However, large scale studies combined with an in-depth technical analysis will be needed to assess differences between these technologies in more detail. © 2020 International Society for Advancement of Cytometry.


Assuntos
Algoritmos , Análise de Dados , Análise por Conglomerados , Citometria de Fluxo
13.
Curr Protoc Cytom ; 92(1): e70, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32150355

RESUMO

Technological advances in fluorescence flow cytometry and an ever-expanding understanding of the complexity of the immune system have led to the development of large (20+ parameters) flow cytometry panels. However, as panel complexity and size increase, so does the difficulty involved in designing a high-quality panel, accessing the instrumentation capable of accommodating large numbers of parameters, and analyzing such high-dimensional data. A recent advancement is spectral flow cytometry, which in contrast to conventional flow cytometry distinguishes the full emission spectrum of each fluorophore across all lasers, rather than identifying only the peak of emission. Fluorophores with a similar emission maximum but distinct off-peak signatures can therefore be accommodated within the same flow cytometry panel, allowing greater flexibility in terms of panel design and fluorophore detection. Here, we highlight the specific characteristics of spectral flow cytometry and aim to guide users through the process of building, designing, and optimizing high-dimensional spectral flow cytometry panels using a comprehensive step-by-step protocol. Special considerations are also given for using highly overlapping dyes, and a logical selection process for optimal marker-fluorophore assignment is provided. © 2020 by John Wiley & Sons, Inc.


Assuntos
Citometria de Fluxo/métodos , Imunofenotipagem/métodos , Antígenos/metabolismo , Corantes Fluorescentes/metabolismo
14.
Elife ; 92020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32041687

RESUMO

Single cell isolation from helminth-infected murine intestines has been notoriously difficult, due to the strong anti-parasite type 2 immune responses that drive mucus production, tissue remodeling and immune cell infiltration. Through the systematic optimization of a standard intestinal digestion protocol, we were able to successfully isolate millions of immune cells from the heavily infected duodenum. To validate that these cells gave an accurate representation of intestinal immune responses, we analyzed them using a high-dimensional spectral flow cytometry panel and confirmed our findings by confocal microscopy. Our cell isolation protocol and high-dimensional analysis allowed us to identify many known hallmarks of anti-parasite immune responses throughout the entire course of helminth infection and has the potential to accelerate single-cell discoveries of local helminth immune responses that have previously been unfeasible.


Parasitic worms known as helminths represent an important health problem in large parts of Africa, South America and Asia. Once their larvae enter the body, they head to the gut where they mature into adults and start laying eggs. In areas with poor sanitation, these may then get passed on to other individuals. To defend the body, the immune system sends large numbers of immune cells to the gut, but it usually struggles to eliminate the parasites. Without deworming medication, the infection can last for many years. Scientists study helminth infections in the laboratory by using worms that naturally infect mice. Understanding exactly how the immune system responds to the infection is essential to grasp why it fails to clear the worms. However, it is difficult to extract immune cells from an infected gut, as the infection creates strong local responses ­ such as an intense 'slime' production to try to flush out the worms. The standard procedure to obtain immune cells from the gut consists of three steps: collecting a gut segment and washing it, stripping away the surface layers with chemicals, and finally using enzymes to digest the tissues, which are then filtered to obtain individual cells. However, this protocol is not able to extract cells during infection. Ferrer-Font et al. therefore methodically refined every step of this method, and finally succeeded in obtaining millions of immune cells from infected guts. For the first time, these cells could then be studied and identified using a new technology called spectral flow cytometry. Over 40 immune cell types were followed throughout the course of infection, revealing that many 'first responders' immune cells were recruited to the gut early on, when the worms were still larvae. However, these cells disappeared once the worms developed into adults. These findings were confirmed by microscopy, which also showed that the first responder cells were found around the developing larvae, likely attacking them. When the adult worms developed, these cells were replaced by other immune cells, which also decreased the longer the worms were present in the gut. This new extraction process established by Ferrer-Font et al. can also be paired with other technologies that can, for example, reveal which genes are turned on in individual cells. This could help map out exactly how the body fights helminth infections, and how to improve this response. The method could also be useful to extract immune cells from the gut in other challenging scenarios, such food allergies or inflammatory bowel disorders.


Assuntos
Duodeno/parasitologia , Citometria de Fluxo/métodos , Interações Hospedeiro-Parasita/imunologia , Nematospiroides dubius , Animais , Duodeno/imunologia , Camundongos Endogâmicos C57BL
15.
NMR Biomed ; 30(9)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28570014

RESUMO

Glioblastoma (GBM) causes poor survival in patients even when applying aggressive treatment. Temozolomide (TMZ) is the standard chemotherapeutic choice for GBM treatment, but resistance always ensues. In previous years, efforts have focused on new therapeutic regimens with conventional drugs to activate immune responses that may enhance tumor regression and prevent regrowth, for example the "metronomic" approaches. In metronomic scheduling studies, cyclophosphamide (CPA) in GL261 GBM growing subcutaneously in C57BL/6 mice was shown not only to activate antitumor CD8+ T-cell response, but also to induce long-term specific T-cell tumor memory. Accordingly, we have evaluated whether metronomic CPA or TMZ administration could increase survival in orthotopic GL261 in C57BL/6 mice, an immunocompetent model. Longitudinal in vivo studies with CPA (140 mg/kg) or TMZ (range 140-240 mg/kg) metronomic administration (every 6 days) were performed in tumor-bearing mice. Tumor evolution was monitored at 7 T with MRI (T2 -weighted, diffusion-weighted imaging) and MRSI-based nosological images of response to therapy. Obtained results demonstrated that both treatments resulted in increased survival (38.6 ± 21.0 days, n = 30) compared with control (19.4 ± 2.4 days, n = 18). Best results were obtained with 140 mg/kg TMZ (treated, 44.9 ± 29.0 days, n = 12, versus control, 19.3 ± 2.3 days, n = 12), achieving a longer survival rate than previous group work using three cycles of TMZ therapy at 60 mg/kg (33.9 ± 11.7 days, n = 38). Additional interesting findings were, first, clear edema appearance during chemotherapeutic treatment, second, the ability to apply the semi-supervised source analysis previously developed in our group for non-invasive TMZ therapy response monitoring to detect CPA-induced response, and third, the necropsy findings in mice cured from GBM after high TMZ cumulative dosage (980-1400 mg/kg), which demonstrated lymphoma incidence. In summary, every 6 day administration schedule of TMZ or CPA improves survival in orthotopic GL261 GBM with respect to controls or non-metronomic therapy, in partial agreement with previous work on subcutaneous GL261.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Ciclofosfamida/administração & dosagem , Ciclofosfamida/uso terapêutico , Dacarbazina/análogos & derivados , Glioblastoma/tratamento farmacológico , Imunocompetência , Administração Metronômica , Animais , Neoplasias Encefálicas/patologia , Causas de Morte , Linhagem Celular Tumoral , Ciclofosfamida/farmacologia , Dacarbazina/administração & dosagem , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Difusão , Feminino , Glioblastoma/patologia , Imageamento por Ressonância Magnética , Camundongos Endogâmicos C57BL , Temozolomida , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos
16.
Metabolites ; 7(2)2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28524099

RESUMO

Glioblastoma (GBM) is the most common aggressive primary brain tumor in adults, with a short survival time even after aggressive therapy. Non-invasive surrogate biomarkers of therapy response may be relevant for improving patient survival. Previous work produced such biomarkers in preclinical GBM using semi-supervised source extraction and single-slice Magnetic Resonance Spectroscopic Imaging (MRSI). Nevertheless, GBMs are heterogeneous and single-slice studies could prevent obtaining relevant information. The purpose of this work was to evaluate whether a multi-slice MRSI approach, acquiring consecutive grids across the tumor, is feasible for preclinical models and may produce additional insight into therapy response. Nosological images were analyzed pixel-by-pixel and a relative responding volume, the Tumor Responding Index (TRI), was defined to quantify response. Heterogeneous response levels were observed and treated animals were ascribed to three arbitrary predefined groups: high response (HR, n = 2), TRI = 68.2 ± 2.8%, intermediate response (IR, n = 6), TRI = 41.1 ± 4.2% and low response (LR, n = 2), TRI = 13.4 ± 14.3%, producing therapy response categorization which had not been fully registered in single-slice studies. Results agreed with the multi-slice approach being feasible and producing an inverse correlation between TRI and Ki67 immunostaining. Additionally, ca. 7-day oscillations of TRI were observed, suggesting that host immune system activation in response to treatment could contribute to the responding patterns detected.

17.
Pharmaceuticals (Basel) ; 10(1)2017 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-28208677

RESUMO

Glioblastoma (GBM) causes poor survival in patients even with aggressive treatment. Temozolomide (TMZ) is the standard chemotherapeutic choice for GBM treatment but resistance always ensues. Protein kinase CK2 (CK2) contributes to tumour development and proliferation in cancer, and it is overexpressed in human GBM. Accordingly, targeting CK2 in GBM may benefit patients. Our goal has been to evaluate whether CK2 inhibitors (iCK2s) could increase survival in an immunocompetent preclinical GBM model. Cultured GL261 cells were treated with different iCK2s including CX-4945, and target effects evaluated in vitro. CX-4945 was found to decrease CK2 activity and Akt(S129) phosphorylation in GL261 cells. Longitudinal in vivo studies with CX-4945 alone or in combination with TMZ were performed in tumour-bearing mice. Increase in survival (p < 0.05) was found with combined CX-4945 and TMZ metronomic treatment (54.7 ± 11.9 days, n = 6) when compared to individual metronomic treatments (CX-4945: 24.5 ± 2.0 and TMZ: 38.7 ± 2.7, n = 6) and controls (22.5 ± 1.2, n = 6). Despite this, CX-4945 did not improve mice outcome when administered on every/alternate days, either alone or in combination with 3-cycle TMZ. The highest survival rate was obtained with the metronomic combined TMZ+CX-4945 every 6 days, pointing to the participation of the immune system or other ancillary mechanism in therapy response.

18.
Biopreserv Biobank ; 14(2): 156-64, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26886080

RESUMO

BACKGROUND: Biopsies extracted from brain cancer patients often display degraded ribosomal RNA, which makes them unusable in transcriptomic experiments. This has not been properly documented in previous works aimed at refining the molecular classification of brain cancer. OBJECTIVE: To determine RNA integrity in a large cohort of human brain cancer biopsies and to evaluate different factors that may influence RNA integrity in both a murine model of glioblastoma and in additional subsets of patient biopsies. METHODS: Total RNA was isolated from 255 biopsies of various human brain tumors (HBTs) and processed on a Bioanalyzer. Correct RNA integrity was considered for samples showing either the ribosomal 28S/18S peak ratio ≥ 1.2 or RNA integrity number ≥ 6. The time-dependent effect of ex vivo ischemia was evaluated in a murine model, whose results were tested in a new collection of 27 human biopsies. Multiple biopsy sampling was considered in a further set comprising 32 biopsies. RESULTS: The 255 human biopsies revealed a substantial percentage of samples displaying degraded RNA (27.5%). The murine model confirmed the known relevance of ex vivo ischemia time in increased RNA degradation. Human biopsies extracted immediately after cauterization showed a trend toward less RNA degradation. Combining snap freezing and multiple sampling of biopsies, the percentage of patients with degraded RNA was reduced by twofold (15.6%). CONCLUSIONS: We provide a first concise study of factors influencing RNA degradation in HBT biopsies. Immediate biopsy removal after cauterization of the tumor area, snap freezing, and multiple sampling improve RNA quality.


Assuntos
Neoplasias Encefálicas/genética , RNA Ribossômico/genética , Animais , Biópsia , Temperatura Corporal , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL
19.
Pathol Oncol Res ; 22(3): 633-7, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26466942

RESUMO

Glioblastoma (GBM) is the most prevalent and aggressive human glial tumour with a median survival of 14-15 months. Temozolomide (TMZ) is the standard chemotherapeutic choice for GBM treatment. Unfortunately, chemoresistence always ensues with concomitant tumour regrowth. Protein kinase CK2 (CK2) contributes to tumour development, proliferation, and suppression of apoptosis in cancer and it is overexpressed in human GBM. Targeting CK2 in GBM treatment may benefit patients. With this translational perspective in mind, we have studied the CK2 expression level by Western blot analysis in a preclinical model of GBM: GL261 cells growing orthotopically in C57BL/6 mice. The expression level of the CK2 catalytic subunit (CK2α) was higher in tumour (about 4-fold) and in contralateral brain parenchyma (more than 2-fold) than in normal brain parenchyma (p < 0.05). In contrast, no significant changes were found in CK2 regulatory subunit (CK2ß) expression, suggesting an increased unbalance of CK2α/CK2ß in GL261 tumours with respect to normal brain parenchyma, in agreement with a differential role of these two subunits in tumours.


Assuntos
Caseína Quinase II/metabolismo , Glioblastoma/metabolismo , Animais , Apoptose/fisiologia , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Carcinogênese/metabolismo , Carcinogênese/patologia , Domínio Catalítico/fisiologia , Proliferação de Células/fisiologia , Feminino , Glioblastoma/patologia , Glioma/metabolismo , Glioma/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA